3.511 \(\int \frac{\tan ^3(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx\)

Optimal. Leaf size=81 \[ \frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 f (a+b)}-\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a+b}}\right )}{2 f (a+b)^{3/2}} \]

[Out]

-((2*a + b)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a + b]])/(2*(a + b)^(3/2)*f) + (Sec[e + f*x]^2*Sqrt[a + b*
Sin[e + f*x]^2])/(2*(a + b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0977817, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {3194, 78, 63, 208} \[ \frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 f (a+b)}-\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a+b}}\right )}{2 f (a+b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^3/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((2*a + b)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a + b]])/(2*(a + b)^(3/2)*f) + (Sec[e + f*x]^2*Sqrt[a + b*
Sin[e + f*x]^2])/(2*(a + b)*f)

Rule 3194

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(a + b*ff*x)^p)/(1 - ff*x)^((
m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^3(e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x}{(1-x)^2 \sqrt{a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{2 f}\\ &=\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 (a+b) f}-\frac{(2 a+b) \operatorname{Subst}\left (\int \frac{1}{(1-x) \sqrt{a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{4 (a+b) f}\\ &=\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 (a+b) f}-\frac{(2 a+b) \operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sin ^2(e+f x)}\right )}{2 b (a+b) f}\\ &=-\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a+b}}\right )}{2 (a+b)^{3/2} f}+\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{2 (a+b) f}\\ \end{align*}

Mathematica [A]  time = 0.225869, size = 77, normalized size = 0.95 \[ -\frac{\frac{(2 a+b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a+b}}\right )}{(a+b)^{3/2}}-\frac{\sec ^2(e+f x) \sqrt{a+b \sin ^2(e+f x)}}{a+b}}{2 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^3/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-(((2*a + b)*ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a + b]])/(a + b)^(3/2) - (Sec[e + f*x]^2*Sqrt[a + b*Sin[e
 + f*x]^2])/(a + b))/(2*f)

________________________________________________________________________________________

Maple [B]  time = 2.783, size = 353, normalized size = 4.4 \begin{align*}{\frac{1}{4\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}f} \left ( - \left ( 2\,\ln \left ( 2\,{\frac{\sqrt{a+b}\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}+b\sin \left ( fx+e \right ) +a}{-1+\sin \left ( fx+e \right ) }} \right ){a}^{2}+3\,\ln \left ( 2\,{\frac{\sqrt{a+b}\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}+b\sin \left ( fx+e \right ) +a}{-1+\sin \left ( fx+e \right ) }} \right ) ab+\ln \left ( 2\,{\frac{\sqrt{a+b}\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}+b\sin \left ( fx+e \right ) +a}{-1+\sin \left ( fx+e \right ) }} \right ){b}^{2}+2\,\ln \left ( 2\,{\frac{\sqrt{a+b}\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}-b\sin \left ( fx+e \right ) +a}{1+\sin \left ( fx+e \right ) }} \right ){a}^{2}+3\,\ln \left ( 2\,{\frac{\sqrt{a+b}\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}-b\sin \left ( fx+e \right ) +a}{1+\sin \left ( fx+e \right ) }} \right ) ab+\ln \left ( 2\,{\frac{\sqrt{a+b}\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}-b\sin \left ( fx+e \right ) +a}{1+\sin \left ( fx+e \right ) }} \right ){b}^{2} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}+2\,\sqrt{a+b-b \left ( \cos \left ( fx+e \right ) \right ) ^{2}} \left ( a+b \right ) ^{3/2} \right ) \left ( a+b \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^3/(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

1/4*(-(2*ln(2/(-1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a^2+3*ln(2/(-1+sin(f*x+
e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*a*b+ln(2/(-1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(
f*x+e)^2)^(1/2)+b*sin(f*x+e)+a))*b^2+2*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e
)+a))*a^2+3*ln(2/(1+sin(f*x+e))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*a*b+ln(2/(1+sin(f*x+e
))*((a+b)^(1/2)*(a+b-b*cos(f*x+e)^2)^(1/2)-b*sin(f*x+e)+a))*b^2)*cos(f*x+e)^2+2*(a+b-b*cos(f*x+e)^2)^(1/2)*(a+
b)^(3/2))/(a+b)^(5/2)/cos(f*x+e)^2/f

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^3/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.5331, size = 563, normalized size = 6.95 \begin{align*} \left [\frac{{\left (2 \, a + b\right )} \sqrt{a + b} \cos \left (f x + e\right )^{2} \log \left (\frac{b \cos \left (f x + e\right )^{2} + 2 \, \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sqrt{a + b} - 2 \, a - 2 \, b}{\cos \left (f x + e\right )^{2}}\right ) + 2 \, \sqrt{-b \cos \left (f x + e\right )^{2} + a + b}{\left (a + b\right )}}{4 \,{\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{2}}, \frac{{\left (2 \, a + b\right )} \sqrt{-a - b} \arctan \left (\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sqrt{-a - b}}{a + b}\right ) \cos \left (f x + e\right )^{2} + \sqrt{-b \cos \left (f x + e\right )^{2} + a + b}{\left (a + b\right )}}{2 \,{\left (a^{2} + 2 \, a b + b^{2}\right )} f \cos \left (f x + e\right )^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^3/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*((2*a + b)*sqrt(a + b)*cos(f*x + e)^2*log((b*cos(f*x + e)^2 + 2*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a +
b) - 2*a - 2*b)/cos(f*x + e)^2) + 2*sqrt(-b*cos(f*x + e)^2 + a + b)*(a + b))/((a^2 + 2*a*b + b^2)*f*cos(f*x +
e)^2), 1/2*((2*a + b)*sqrt(-a - b)*arctan(sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a - b)/(a + b))*cos(f*x + e)^2
 + sqrt(-b*cos(f*x + e)^2 + a + b)*(a + b))/((a^2 + 2*a*b + b^2)*f*cos(f*x + e)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{3}{\left (e + f x \right )}}{\sqrt{a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**3/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**3/sqrt(a + b*sin(e + f*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{3}}{\sqrt{b \sin \left (f x + e\right )^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^3/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^3/sqrt(b*sin(f*x + e)^2 + a), x)